Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

History of blood gas analysis. VI. Oximetry

Identifieur interne : 001415 ( Main/Exploration ); précédent : 001414; suivant : 001416

History of blood gas analysis. VI. Oximetry

Auteurs : John W. Severinghaus [États-Unis] ; Poul B. Astrup [Danemark]

Source :

RBID : ISTEX:ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870

English descriptors

Abstract

Abstract: Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.

Url:
DOI: 10.1007/BF02851177


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">History of blood gas analysis. VI. Oximetry</title>
<author>
<name sortKey="Severinghaus, John W" sort="Severinghaus, John W" uniqKey="Severinghaus J" first="John W." last="Severinghaus">John W. Severinghaus</name>
</author>
<author>
<name sortKey="Astrup, Poul B" sort="Astrup, Poul B" uniqKey="Astrup P" first="Poul B." last="Astrup">Poul B. Astrup</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870</idno>
<date when="1986" year="1986">1986</date>
<idno type="doi">10.1007/BF02851177</idno>
<idno type="url">https://api.istex.fr/document/ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001195</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001195</idno>
<idno type="wicri:Area/Istex/Curation">001109</idno>
<idno type="wicri:Area/Istex/Checkpoint">001186</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001186</idno>
<idno type="wicri:doubleKey">0748-1977:1986:Severinghaus J:history:of:blood</idno>
<idno type="wicri:Area/Main/Merge">001419</idno>
<idno type="wicri:Area/Main/Curation">001415</idno>
<idno type="wicri:Area/Main/Exploration">001415</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">History of blood gas analysis. VI. Oximetry</title>
<author>
<name sortKey="Severinghaus, John W" sort="Severinghaus, John W" uniqKey="Severinghaus J" first="John W." last="Severinghaus">John W. Severinghaus</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Anesthesia and Anesthesia Research Center, Cardiovascular Research Institute, University of California Medical Center, San Francisco</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Astrup, Poul B" sort="Astrup, Poul B" uniqKey="Astrup P" first="Poul B." last="Astrup">Poul B. Astrup</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Clinical Chemistry, Rigshospital, University of Copenhagen, Copenhagen</wicri:regionArea>
<placeName>
<settlement type="city">Copenhague</settlement>
<region type="région" nuts="2">Hovedstaden</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Clinical Monitoring</title>
<title level="j" type="abbrev">J Clin Monitor Comput</title>
<idno type="ISSN">0748-1977</idno>
<idno type="eISSN">1573-2614</idno>
<imprint>
<publisher>Springer Netherlands</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="1986-10-01">1986-10-01</date>
<biblScope unit="volume">2</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="270">270</biblScope>
<biblScope unit="page" to="288">288</biblScope>
</imprint>
<idno type="ISSN">0748-1977</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0748-1977</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta</term>
<term>Actual saturation</term>
<term>American council</term>
<term>Anesth analg</term>
<term>Anesthesia</term>
<term>Anesthesia research center</term>
<term>Anesthesiology</term>
<term>Appl</term>
<term>Appl physiol</term>
<term>Arterial blood</term>
<term>Arterial oxygen saturation</term>
<term>Astrup</term>
<term>Barrier layer photocell</term>
<term>Barrier layer photocells</term>
<term>Biochim biophys acta</term>
<term>Biol</term>
<term>Biol chem drabkin</term>
<term>Blood content</term>
<term>Brinkman</term>
<term>Bunsen</term>
<term>Capillary blood</term>
<term>Carboxyhemoglobin</term>
<term>Cardiovascular dynamics</term>
<term>Catheter</term>
<term>Chem</term>
<term>Clare</term>
<term>Clare millikan</term>
<term>Clin</term>
<term>Clin chem</term>
<term>Clinical chemistry</term>
<term>Clinical monitoring</term>
<term>Clinical surgery</term>
<term>Conduction band</term>
<term>Congenital heart disease</term>
<term>Constant temperature</term>
<term>Continuous measurement</term>
<term>Continuous monitoring</term>
<term>Continuous recording</term>
<term>Cuvette</term>
<term>Cuvette oximeter</term>
<term>Cuvette oximeters</term>
<term>Cuvette oximetry</term>
<term>Dissociation</term>
<term>Drabkin</term>
<term>Duke university</term>
<term>Earpiece</term>
<term>Fiberoptic</term>
<term>Glenn allan millikan</term>
<term>Green filter</term>
<term>Hemoglobin</term>
<term>Hemoglobin concentration</term>
<term>Hemoglobin pigments</term>
<term>Hemoglobin solutions</term>
<term>High altitude</term>
<term>Historical review</term>
<term>Incandescent light</term>
<term>Infrared light</term>
<term>Intracardiac oximetry</term>
<term>John pappenheimer</term>
<term>Karl matthes</term>
<term>Kramer</term>
<term>Kurt kramer</term>
<term>Leipzig</term>
<term>Lfibbers</term>
<term>Light absorption</term>
<term>Light intensity</term>
<term>Light path</term>
<term>Light source</term>
<term>Light transmission</term>
<term>Linear function</term>
<term>Lord adrian</term>
<term>Matthes</term>
<term>Mayo clinic</term>
<term>Measure oxygen saturation</term>
<term>Medical physics</term>
<term>Mercury vapor light</term>
<term>Military aviation</term>
<term>Millikan</term>
<term>Millikan oximeter</term>
<term>Multiple wavelengths</term>
<term>Neon light</term>
<term>Newborn infants</term>
<term>Nichtinvasive messung</term>
<term>Nicolai</term>
<term>October</term>
<term>Opitz</term>
<term>Optical density</term>
<term>Optical detection</term>
<term>Optical fibers</term>
<term>Optical path length</term>
<term>Other pigments</term>
<term>Oximeter</term>
<term>Oximetry</term>
<term>Oxygen consumption</term>
<term>Oxygen dissociation curve</term>
<term>Oxygen electrode</term>
<term>Oxygen saturation</term>
<term>Oxygen supply</term>
<term>Oxygen tension</term>
<term>Oxygen transport</term>
<term>Oxyhemoglobin</term>
<term>Path length</term>
<term>Pathol</term>
<term>Pathol pharmacol</term>
<term>Percentage oxygen saturation</term>
<term>Photocell</term>
<term>Photoelectric</term>
<term>Photoelectric cell</term>
<term>Photoelectric cells</term>
<term>Photometer</term>
<term>Photometry</term>
<term>Physiol</term>
<term>Physiol chem</term>
<term>Physiological chemistry</term>
<term>Physiology</term>
<term>Polanyi</term>
<term>Pulsatile changes</term>
<term>Pulse oximeter</term>
<term>Pulse oximeters</term>
<term>Pulse oximetry</term>
<term>Quantitative fluorescence photometry</term>
<term>Rapid reactions</term>
<term>Reflection oximeter</term>
<term>Respir physiol</term>
<term>Respiratory function</term>
<term>Robert brinkman</term>
<term>Saturation</term>
<term>Saturation values</term>
<term>Scientific biography</term>
<term>Severinghaus</term>
<term>Small amounts</term>
<term>Spectrophotometric</term>
<term>Spectrophotometric determination</term>
<term>Spectrophotometric measurement</term>
<term>Surgical anesthesia</term>
<term>Thesis research</term>
<term>Tissue oxygen consumption</term>
<term>Tissue pigments</term>
<term>Tissue thickness</term>
<term>Transcutaneous measurement</term>
<term>Unopened arteries</term>
<term>Untersuchungen fiber</term>
<term>Vacuum tube amplifier</term>
<term>Venous oxygen saturation</term>
<term>Wavelength</term>
<term>West germany</term>
<term>Whole blood</term>
<term>Year book</term>
<term>Zijlstra</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Danemark</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Hovedstaden</li>
</region>
<settlement>
<li>Copenhague</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Severinghaus, John W" sort="Severinghaus, John W" uniqKey="Severinghaus J" first="John W." last="Severinghaus">John W. Severinghaus</name>
</region>
</country>
<country name="Danemark">
<region name="Hovedstaden">
<name sortKey="Astrup, Poul B" sort="Astrup, Poul B" uniqKey="Astrup P" first="Poul B." last="Astrup">Poul B. Astrup</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001415 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001415 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870
   |texte=   History of blood gas analysis. VI. Oximetry
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024